
Microservices and DevOps

DevOps and Container Technology
Continuous Integration

Henrik Bærbak Christensen



Fowler: Practices

• CI requires a

lot of practices

to be in

place…

• [Fowler, 2006]

• Premise:

– Monolith

focus…

CS@AU Henrik Bærbak Christensen 2



Maintain Single Repository

• Use a strong software 

configuration management tool

– Git, Subversion, …

• Define a branching and release 

management strategy

– Ex:

• http://nvie.com/posts/a-successful-git-

branching-model/

• https://guides.github.com/introduction/f

low/

CS@AU Henrik Bærbak Christensen 3

http://nvie.com/posts/a-successful-git-branching-model/
https://guides.github.com/introduction/flow/


Automate Build

• Use a build tool

– Gradle, Maven, Ant, …

• Litmus test on New Machine

– Check out source, issue a single command, and it should be 

running!

– Does your SkyCave pass the litmus test?

CS@AU Henrik Bærbak Christensen 4



Self-Testing Build

• Make the build do

– Compile, run (all) test suites, run

• Built into the Test-Driven Development process…

• Note

– Run all unit test suites on every build on dev machine

• But not the integration test suites that exercise the out-of-process 

tests. They are too slow

– Use a CI approach to run all test suites that include the 

integration test suites

CS@AU Henrik Bærbak Christensen 5



Commit to Master Every Day

• ‘High frequency’ is the ideal !

• Commit to the integration/master branch frequently

• Integration is communication and early feedback

– Finding the integration defect today is better than tomorrow

• In line with TDD principle

– Take small steps!

• GitHub Flow is a simple branch model supporting this

CS@AU Henrik Bærbak Christensen 6



Every Commit is Integration

• Every commit must trigger integration build on build 

server

– But – commit to which branch? 

• Manually

– Go to integration server; checkout out, and build (=test)

• Continuous Integration Server

– Dedicated software and machine

– Bitbucket/Gitlab pipelines…

CS@AU Henrik Bærbak Christensen 7



Fix Broken Builds Immediately

• You must fix any integration defects immediately as they 

appear

– Kent Beck: ”Nobody has a higher priority task than fixing the 

build”

• In CI, you strive to have a deliverable product at all times!

• One resort: Revert to last known good build…

CS@AU Henrik Bærbak Christensen 8



Keep the Build Fast

• Make the build fast, so defects are detected fast

– What is fast? 10 minutes? One hour?

– Warstory: The 15 minute full compile in the 1990’ies

• Meant: you forgot why you started it!

• Use pipelines and diverse test sets

– Smoke testing Find obvious/big defects

– Unit testing Much is stubbed (like DBs!)

– Comprehensive testing Real DBs are started, filled, and tested

• Two staged pipeline

– First-stage: Just unit tests (“very fast=10min” ?); 

– Second-stage: Comprehensive (hours);

CS@AU Henrik Bærbak Christensen 9



Test in Clone of Production Env

• Make the test environment look like the production 

environment as much as possible

– Same DBs, same version, same configuration, etc.

• Not always possible

– Consider NetFlix or Twitter ☺

CS@AU Henrik Bærbak Christensen 10



Easy to Get Latest Executable

• Every stakeholder must have access to latest product

– Users, sales, developers, managers, …

• Get feedback from the ones that will use it!

CS@AU Henrik Bærbak Christensen 11



Everyone Can See What’s Happening

• Make every change visible; everybody can see the 

current state

– Alas: communication between stakeholders!

• DashBoards on the integration server shows ‘what is 

happening’

• Fowler warstory

– Calendar with green/red square for ok/broken builds per day

– Induce a common goal of ‘getting all the days green’

CS@AU Henrik Bærbak Christensen 12



Automate Deployment

• Make the deployment automatic so you can easily and 

quickly move executables between environments

– Make scripts that does this movement

fast, easy, and agile…

– Today: Use IaC and tooling…

• Again: Speed means we will do it!

• Major driver for Docker…

CS@AU Henrik Bærbak Christensen 13

Development Environment

Staging Environment

Production Environment



Discussion

• CI means

– Reduced risk

– Increases awareness, visibility, of trouble spots

• Increases confidence

– Combats ‘Broken Windows Syndrome’

• Liabilities

– Tools suite in place

– Training and habits must be in place

CS@AU Henrik Bærbak Christensen 14



Discussion

• CI does not require a build-server. It is a practice!

CS@AU Henrik Bærbak Christensen 15



The Three Question

According to Jez Humble’s

“Continuous Delivery”



Are we really doing it?

CS@AU Henrik Bærbak Christensen 17



MicroService Take…



Single Source – Single Build

• All services in one Repo, all build in one process

– Benefits/liabilities?

CS@AU Henrik Bærbak Christensen 19

Questions
• Ownership?

• Speed?
• Broken builds?

• What needs deploying?



Single Source – Multi Build

• All services in one repo, build per service

– Benefits/liabilities?

CS@AU Henrik Bærbak Christensen 20

Questions
• Ownership?

• Speed?
• Broken builds?

• What needs deploying?



Multi Source – Multi Build

• One service per repo, one build per service

– Benefits/liabilities?

CS@AU Henrik Bærbak Christensen 21

Questions
• Ownership?

• Speed?
• Broken builds?

• What needs deploying?



Test Journeys

• Triggering the E2E tests / journeys is also a bit more 

involved…

CS@AU Henrik Bærbak Christensen 22



Discussion

• For completeness

– Which model is missing? 

– Does this model have some virtue?

• SkyCave is monolith, but…

– Which model does is sort of lend itself to?

CS@AU Henrik Bærbak Christensen 23



Summary

CS@AU Henrik Bærbak Christensen 24



Summary

• Microservices add some complexity

– Single source – single build

– Single source – multi build

– Multi source – multi build

– Multi source – single build (?)

CS@AU Henrik Bærbak Christensen 25


