/v

AARHUS UNIVERSITET

Microservices and DevOps

DevOps and Container Technology
Continuous Integration

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

« Clrequires a
lot of practices
to be in
place...

« [Fowler, 2006]

e Premise:

— Monolith
focus...

CS@AU

Practices of Continuous Integration

Fowler: Practices

Maintain a Single Source Repository.
Automate the Build

Make Your Build Self-Testing

Everyone Commits To the Mainline Every Day
Every Commit Should Build the Mainline on an
Integration Machine

Fix Broken Builds Immediately

Keep the Build Fast

Test in a Clone of the Production Environment
Make it Easy for Anyone to Get the Latest
Executable

Everyone can see what's happening
Automate Deployment

Henrik Baerbak Christensen 2

/v Maintain Single Repository

AARHUS UNIVERSITET

branches

« Use a strong software
configuration management tool
— Git, Subversion, ...

« Define a branching and release
management strategy

— EX:
* http://nvie.com/posts/a-successful-qit-
branching-model/

« https://quides.github.com/introduction/f
low/

CS@AU Henrik Baerbak Christensen 3

http://nvie.com/posts/a-successful-git-branching-model/
https://guides.github.com/introduction/flow/

eV Automate Build

AARHUS UNIVERSITET

« Use a build tool
— Gradle, Maven, Ant, ...

 Litmus test on New Machine

— Check out source, issue a single command, and it should be
running!

— Does your SkyCave pass the litmus test?

/v Self-Testing Build

AARHUS UNIVERSITET
« Make the build do

— Compile, run (all) test suites, run

* Built into the Test-Driven Development process...

e Note

— Run all unit test suites on every build on dev machine

« But not the integration test suites that exercise the out-of-process
tests. They are too slow

— Use a Cl approach to run all test suites that include the
Integration test suites

/v Commit to Master Every Day

AARHUS UNIVERSITET
« 'High frequency’ is the ideal !
Commit to the integration/master branch frequently

Integration is communication and early feedback
— Finding the integration defect today is better than tomorrow

In line with TDD principle
— Take small steps!

GitHub Flow is a simple branch model supporting this

/v Every Commit Is Integration

AARHUS UNIVERSITET

« Every commit must trigger integration build on build
server
— But — commit to which branch?

« Manually

— Go to integration server; checkout out, and build (=test)
. 3

« Continuous Integration Server
— Dedicated software and machine
— Bitbucket/Gitlab pipelines...

CS@AU Henrik Baerbak Christensen

eV Fix Broken Builds Immediately

AARHUS UNIVERSITET

* You must fix any integration defects immediately as they
appear

— Kent Beck: "Nobody has a higher priority task than fixing the
build”

« In ClI, you strive to have a deliverable product at all times!

* One resort: Revert to last known good build...

/v Keep the Build Fast

AARHUS UNIVERSITET

« Make the build fast, so defects are detected fast

— What is fast? 10 minutes? One hour?

— Warstory: The 15 minute full compile in the 1990’ies

« Meant: you forgot why you started it!

« Use pipelines and diverse test sets

— Smoke testing Find obvious/big defects

— Unit testing Much is stubbed (like DBs!)

— Comprehensive testing Real DBs are started, filled, and tested
« Two staged pipeline

— First-stage: Just unit tests (“very fast=10min” ?);

— Second-stage: Comprehensive (hours);

/v Test in Clone of Production Env

AARHUS UNIVERSITET

« Make the test environment look like the production
environment as much as possible
— Same DBs, same version, same configuration, etc.

« Not always possible
— Consider NetFlix or Twitter ©

/v Easy to Get Latest Executable

AARHUS UNIVERSITET

* Every stakeholder must have access to latest product
— Users, sales, developers, managers, ...

 Get feedback from the ones that will use it!

/v Everyone Can See What’s Happening

AARHUS UNIVERSITET

 Make every change visible; everybody can see the
current state
— Alas: communication between stakeholders!

« DashBoards on the integration server shows ‘what is
happening’

* Fowler warstory
— Calendar with green/red square for ok/broken builds per day

— Induce a common goal of ‘getting all the days green’

/v Automate Deployment

AARHUS UNIVERSITET

« Make the deployment automatic so you can easily and
quickly move executables between environments

— Make scripts that does this movement
fast, easy, and agile___ Development Environment

— Today: Use laC and tooling...

« Again: Speed means we will do it!

Staging Environment

« Maijor driver for Docker...

Production Environment

| oevlopmentcnronment
¥

| searsenvromert
¥

I

CS@AU Henrik Baerbak Christensen 13

eV Discussion

AARHUS UNIVERSITET

* Cl means
— Reduced risk

— Increases awareness, visibility, of trouble spots
 Increases confidence

— Combats ‘Broken Windows Syndrome’

« Liabilities
— Tools suite in place
— Training and habits must be in place

CS@AU Henrik Beerbak Christensen 14

eV Discussion

AARHUS UNIVERSITET

« CIl does not require a build-server. It is a practice!
I | TS 3

1. Build computer? Check.
2. Ridiculous toy? Check.

3. Annoying bell? Optional.
4. Automated build? Check.
5. Group agreement? Check.

You're ready to go! Let's run down the pre-launch checklist:

CS@AU Henrik Baerbak Christensen

15

/v

AARHUS UNIVERSITET

The Three Question

According to Jez Humble's
“Continuous Delivery”

/v Are we really doing it?
AARHUS UNIVERSITET

Prerequisites for Continuous Integration

Continuous integration won't fix your build process on its own. In fact, it can be very painful if you start doing it midproject.
For CI to be effective, the following practices will need to be in place before you start.

Check In Regularly

The most important practice for continuous integration to work properly is frequent check-ins to trunk or mainline. You
should be checking in your code at least a couple of times a day.

Create a Comprehensive Automated Test Suite

If you don't have a comprehensive suite of automated tests, a passing build only means that the application could be compiled
and assembled. While for some teams this is a big step, it’s essential to have some level of automated testing to provide

Don’t Check In on a Broken Build

The cardinal sin of continuous integration is checking in on a broken build. If the build breaks, the developers responsible are
waiting to fix it. They identify the cause of the breakage as soon as possible and fix it. If we adopt this strategy, we will always
be in the best position to work out what caused the breakage and fix it immediately. If one of our colleagues has made a check-
in and broken the build as a result, then to have the best chance of fixing it, they will need a clear run at the problem. They
don’'t want us checking in further changes, triggering new builds, and compounding the failure with more problems.

CS@AU Henrik Baerbak Christensen 17

/v

AARHUS UNIVERSITET

MicroService Take...

/v

Single Source — Single Build

AARHUS UNIVERSITET
« All services in one Repo, all build in one process

— Benefits/liabilities?

-

Source code repo

Juser-service
/catalog-service

User service
build-lz J

Monalithic Catalog service

/Invoice-service L

Any change triggers
the build

build _ build123 §

Invoice service |
build-123

Each build produces all 3

Continuous integration {
server artifacts with the same
R build number

i I
[]

Questions
 Ownership?
e Speed?
* Broken builds?
What needs deploying?

Figure 6-1. Using a single source code repository and CI build for all microservices

CS@AU

Henrik Baerbak Christensen

19

Y Single Source — Multi Build

AARHUS UNIVERSITET
« All services in one repo, build per service
— Benefits/liabilities? Questions
 Ownership?
e Speed?
* Broken builds?
Source code repo User meem * What needs deploying?

I

service build buildlz

Catalog | Catalog service
service build build-123

| - fusex-service
—P" |

{~/catalog-service =

I

| | Invoice Invoice service
| 'i(;:xr\fézce-sewice : servkebuildA build-123

(1 server watches for changes Continuous integration Each bui‘l‘d‘ﬁfoducesé
to specific parts of the repo server L single artifact

N .

Figure 6-2. A single source repo with subdirectories mapped to independent builds

CS@AU Henrik Baerbak Christensen 20

/v

AARHUS UNIVERSITET

Multi Source — Multi Build

* One service per repo, one build per service

— Benefits/liabilities?

User
setvice build |

Check-in
triggers (atalog |
individual service build §
builds R
fnvoice
service build |

|

User
service build

(atalog
service build

I

v

Invoice
service build

I

Continuous integration §
server ;

User serygs
build-1 -

Catalog service
build-456 }

Invoice service
build-789 }

Each build produces a

single artifact

Questions
 Ownership?
e Speed?
* Broken builds?
What needs deploying?

I'igure 6-3. Using one source code repository and CI build per microservice

CS@AU

Henrik Baerbak Christensen

21

/v

AARHUS UNIVERSITET

Test Journeys

* Triggering the E2E tests / journeys is also a bit more

Involved...

Web shop

(ustomer
service

Helpdesk

Loyalty
points bank

CS@AU

W

E L

Unit tests—} (Semce tests}

o

3
. \‘

Unit tests) (Semce tests}

&
Build 4
- . ' L

Unit tests }

Service tests)

-
ot |
SRS s “

Unit tests }

Service tests]

Henrik Baerbak Christensen

\

4
‘A

’ :

End-to-end

tests

22

eV Discussion

AARHUS UNIVERSITET

« For completeness
— Which model is missing?
— Does this model have some virtue?

« SkyCave is monolith, but...
— Which model does is sort of lend itself to?

/v

AARHUS UNIVERSITET

CS@AU

Summary
Practices of Continuous Integration

Maintain a Single Source Repository.
Automate the Build
Make Your Build Self-Testing
Everyone Commits To the Mainline Every Day
Every Commit Should Build the Mainline on an
Integration Machine
Fix Broken Builds Immediately
Keep the Build Fast
Test in a Clone of the Production Environment
Make it Easy for Anyone to Get the Laiest
Executable
Everyone can see what's happening
Automate Deployment

Henrik Baerbak Christensen 24

/v Summary

AARHUS UNIVERSITET

« Microservices add some complexity
— Single source — single build
— Single source — multi build
— Multi source — multi build

— Multi source — single build (?)

